a2 United States Patent

Gupta

US009471783B2

US 9,471,783 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)
(73)

")

@
(22)

(65)

(1)

(52)

(58)

(56)

2003/0115479 Al1*
2005/0091512 Al*

GENERIC UNPACKING OF APPLICATIONS
FOR MALWARE DETECTION

Applicant: Deepak Gupta, Beaverton, OR (US)
Inventor: Deepak Gupta, Beaverton, OR (US)
Assignee: McAfee, Inc., Santa Clara, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 435 days.

Appl. No.: 13/838,663
Filed: Mar. 15, 2013

Prior Publication Data

US 2014/0283058 Al Sep. 18, 2014

Int. CL.

GOGF 21/00 (2013.01)

GOG6F 21/56 (2013.01)

U.S. CL

CPC GOG6F 21/566 (2013.01); GO6F 21/564
(2013.01)

Field of Classification Search

CPC o, GO6F 21/56-21/568

USPC e 726/22-24

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

6/2003 Edwards ef al. 713/200
4/2005 SHIPP wovvovvveeeoeceesier 713/188

$05~

2005/0172337 Al* /2005 Bodorin et al. 726/22
2007/0074026 Al* 3/2007 HicKS ..ooorvvrveeierieirnn 713/176
2008/0263659 Al 10/2008 Alme

2010/0011441 Al 1/2010 Christodorescu et al.
2011/0258163 A1 10/2011 Volkoff et al.

2012/0090031 Al 4/2012 Fossen et al.

FOREIGN PATENT DOCUMENTS

KR 10-2010-0073126 A 7/2010

OTHER PUBLICATIONS

“OmniUnpack: Fast, Generic, and Safe Unpacking of Malware”,
Martignoni et al., 2007.*

International Search Report and Written Opinion received for PCT
Patent Application No. PCT/US2014/019960, mailed on Jun. 18,
2014, 10 pages.

* cited by examiner

Primary Examiner — John B King
(74) Attorney, Agent, or Firm — Blank Rome LLP

(57) ABSTRACT

A technique for detecting malware in an executable allows
unpacking of a packed executable before determining
whether the executable is malware. In systems with hard-
ware assisted virtualization, hardware virtualization features
may be used to iteratively unpack a packed executable in a
controlled manner without needing knowledge of a packing
technique. Once the executable is completely unpacked,
malware detection techniques, such as signature scanning,
may be employed to determine whether the executable
contains malware. Hardware assisted virtualization may be
used to facilitate the scanning of the run-time executable in
memory.

25 Claims, 8 Drawing Sheets

500 FILE ARRIVES AT TARGET MACHINE IN PACKED

& OR MULTIPLY PACKED FORMAT

LAY

FILE CAN BE CHECKED AGAINST KNOWN

SIGNATURES

FILE BEGINS EXECUTION

S~

UNPACKING CODE INITIATED TO EXPAND
FILE TO UNPACKED STATE

S5~

UNPACKING PROCESS REPEATS UNTIL UNPACKED
COMPLETELY AND ENTRY POINT IS MAIN ENTRY

POINT AND NOT FURTHER UNPACKING CODE

BN

535

POINT AT WHICH SIGNATURES
SHOULD BE SCANNED

HAIN (LE., ORIGINAL) ENTRY POINT BEGINS
EXECUTION ON TARGET MACHINE

U.S. Patent Oct. 18, 2016 Sheet 1 of 8 US 9,471,783 B2

J’\wo
/—IOI /—IOZ

105 120
BINARY HEADER UPDATED BINARY HEADER
125
110 Y VIRTUAL CODE SECTION,
SIZE IN FILE MAY BE ZERO
CODE SECTION 130~
PACKER CODE SECTION,
PACKING PROCESS INCLUDES UNPACKER STUB
—
/_”5 |35\
PACKED CODE AND
DATA SECTION "
FIG. 1

(PRIOR ART)

U.S. Patent Oct. 18, 2016 Sheet 2 of 8 US 9,471,783 B2

FIG. 2

~o
(=
o~

;
///
L

/\— 200

202

Fg

/YY)

204

04

203

“
/A

~
=3
~

202

/i

/—ZIO

U.S. Patent Oct. 18, 2016 Sheet 3 of 8 US 9,471,783 B2

/300
///--325///,-305

/

L—310

\

PROCESSING UNIT

330}/
L—315
INPUT INPUT/ v

MEMORY
OUTPUT
BUS
L—320
NETWORK I/F ,/”/
DISPLAY
355 L—340
PSD

FIG. 3

US 9,471,783 B2

Sheet 4 of 8

Oct. 18, 2016

U.S. Patent

vy "Old

THYMAYVH
N0l
SILSILYLS INION
(HWA) YOLINOW ILSIYNIH Y3NN3 ILSHNIH
INIHOYW TYNLYIA
N\ e e
- YIVIND JIYINDD
N-01p
€ WILSAS T WILSAS | WILSAS
ONILY¥3dO DNILYY340 ONILY§3d0
ocp— 0sp— \o¢p
sl|g|| s
=) =] =]
oel\ ST

U.S. Patent

500

Oct. 18, 2016 Sheet 5 of 8

505~

US 9,471,783 B2

FILE ARRIVES AT TARGET MACHINE IN PACKED
OR MULTIPLY PACKED FORMAT

510~ J'

FILE CAN BE CHECKED AGAINST KNOWN
SIGNATURES

S5~ J'

FILE BEGINS EXECUTION

510~ J'

UNPACKING CODE INITIATED TO EXPAND
FILE TO UNPACKED STATE

S~ J'

UNPACKING PROCESS REPEATS UNTIL UNPACKED
COMPLETELY AND ENTRY POINT IS MAIN ENTRY
POINT AND NOT FURTHER UNPACKING CODE

530_ POINT AT WHICH SIGNATURES

SHOULD BE SCANNED

MAIN (LE., ORIGINAL) ENTRY POINT BEGINS
EXECUTION ON TARGET MACHINE

FIG. 5

U.S. Patent

600

8

Oct. 18, 2016 Sheet 6 of 8

05~

BINARY LOAD TIME -
PARSE SECTIONS OF PACKED EXECUTABLE

o~

10~ l

READ/EXECUTE/WRITE (RWX) PERMISSIONS ARE
SET TO READ/EXECUTE (R_X) PERMISSIONS ONLY

(=

o

(=)

(=

15~ l

IDENTIFY ENTRY POINT PAGE AND SET ITS
PERMISSIONS TO READ ONLY (R__)

- [

RETURN CONTROL TO GUEST 0S

- 1

AT VIOLATION TIME, TRANSFER CONTROL
T0 VMM, RECORD HEURISTIC STATISTICS

30~ l

PERFORM SCAN BASED ON
HEURISTICS, IF NECESSARY

35~

CHANGE PERMISSIONS AND RETURN
CONTROL TO GUEST 03

US 9,471,783 B2

FIG. 6A

U.S. Patent Oct. 18, 2016 Sheet 7 of 8 US 9,471,783 B2

650
VMEXIT ON /
660

ENTRY POINT

655

STATE I
BINARY LOAD
AND PAGE
PERMISSIONS SET

STATE 2
IMAGE ENTRY POINT
STATE RECORDED

CONTINUE
EXECUTION

610 YMEXIT AT

PAGE EXECUTE VIOLATION

STATE 4:
UPDATE HEURISTIC

DATA AND MAKE PAGE
EXECUTABLE BUT NOT
WRITEABLE

665

STATE 3:

EXECUTION
CONTINUES
NORMALLY

VMEXIT AT
PAGE WRITE
VIOLATION

STATE 5:
UPDATE HEURISTIC
DATA AND MAKE PAGE
WRITEABLE BUT NOT
EXECUTABLE

CONTINUE
EXECUTION WITH
NO DETECTION

EXECUTION
COMPLETES

EXECUTION TERMINATED

STATE 6: FORCEFULLY WITH MALWARE s;?)IiERZM
PERFORM A DETECTION EXECUTION
SCAN BASED ON

HEURISTICS TERMINATED

630
FIG. 6B

US 9,471,783 B2

Sheet 8 of 8

Oct. 18, 2016

U.S. Patent

L "9l

XY

MY hd

MY ed

MY T

MY CId

X ¥5d

X ¥ d

X ¥ Ed

X4

MY 1d

X ¥

X ¥ td

X ¥ :ed

X ¥

X¥:ld

MY

XY d

X¥ed

Xy

X¥-id

US 9,471,783 B2

1
GENERIC UNPACKING OF APPLICATIONS
FOR MALWARE DETECTION

TECHNICAL FIELD

This disclosure relates generally to a system and method
to unpack executable binaries such that less reliance is
placed on multiple signatures (e.g., one for each packing
method) to identify potential malware being maintained in
virus signature DAT files. More particularly, but not by way
of limitation, this disclosure relates to using hardware-
assisted virtualization when unpacking a packed executable
file to determine its original entry point and, prior to
execution of original entry point, performing a formal scan
of the executable once it reaches its fully expanded form.

BACKGROUND

Contemporary delivery of application code typically
involves its compression through a packing process. By
using a packing process, binary file sizes may be reduced,
and multiple files may be combined into one file. Modern
packing processes create “self-extracting executables,”
which may be executed to unpack the contents of the packed
code. That is, the packed code itself is accompanied by an
executable code section that, when executed, results in
inflating or uncompressing the packed code. Accordingly,
running a self-extracting executable can result in the packed
code executable being expanded on disk, in memory, or
both.

When packing a file to create a self-extracting executable,
many different types of compression algorithms and packing
techniques may be employed. Some of these are well-known
and documented while others are not. Employing different
techniques on the same file to create a self-extracting
executable will result in different files—both the packing
code and the packed code may be different because of
different packers and varying results from different com-
pression algorithms. Further, if unknown or undocumented
techniques are used to pack the file into a self-extracting
executable, it may be difficult to even determine the distinc-
tion between the packing code and the packed code.

These characteristics of self-extracting executables are
often exploited by malware developers to hide malware
from antivirus programs or malware detection programs.
One common method to detect malware is signature scan-
ning. With signature scanning, files are scanned for bit
patterns, or signatures, that are known or suspected to be
associated with malware. When a bit pattern in a file matches
a signature of known malware, then that file can be identified
as being, or containing, malware. However, a signature of a
malicious executable can be easily changed in an effort to
obfuscate the executable. When malware is packed, detec-
tion may be avoided because the known signature of the
unpacked malware will not match any bit pattern of the
packed malware file.

To attempt to overcome these efforts to hide malware,
antivirus programs and malware detection programs may
employ multiple techniques. One technique is to extract the
packed code in memory without executing it and then
attempt to scan the uncompressed binary for malware sig-
natures. Packed code may be extracted by emulating its
execution or, if the packing algorithm is known, performing
the extraction by the antivirus program. If the packing
technique is not well-known or documented, extracting the
packed code under the control of the antivirus program may
not be possible. Also, many packing algorithms use anti-

10

15

20

25

30

35

40

45

50

55

60

65

2

emulation and anti-debugging techniques to simply termi-
nate the unpacking process after detecting that the unpack-
ing is being performed by a debugger or through execution
emulation. Time stamping parts of the code flow is a
standard method that may be used to determine that code is
being emulated. Similarly, identifying that code is being
debugged may be easily determined by inquiring to the
operating system.

Even if the self-extracting executable is allowed to
execute or be emulated, an antivirus program may have
difficulty in determining when the unpacking part of execu-
tion is complete and when the originally compressed execut-
able begins execution. In a self-extracting executable, the
unpacking code and the packed executable are part of the
same binary, and determining the distinction between the
two in memory can be difficult.

Another technique to overcome the efforts to hide mal-
ware is to add signatures of known self-extracting
executables which contain malware into an antivirus signa-
ture database once such a new signature of packed malware
is identified. A weakness to this technique is that it may be
easily avoided by slightly altering the packer code or the
packing technique, resulting in a different self-extracting
executable, and thus a different signature. Adding signatures
accounting for these variations in packing techniques to the
antivirus signature database serves to increase the size of the
signature database. This causes a problem in that the number
of signatures and the difficulty of maintaining of signature
files can correspondingly increase. Further, these efforts may
be further thwarted because the packing process can be
repeated any number of times using different packing algo-
rithms in different orders, creating an even greater number of
signatures to identify and maintain.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram 100 illustrating a simplified
structure of an executable file 101 and a compressed self-
extracting executable 102 (presumably of smaller size) as
known in the prior art.

FIG. 2 is a block diagram illustrating a network architec-
ture 300 capable of being configured to facilitate one or
more disclosed embodiments.

FIG. 3 is a block diagram illustrating a computer with a
processing unit which could be configured according to one
or more disclosed embodiments.

FIG. 4 is a block diagram illustrating a software stack of
a computer system with a virtual machine monitor, guest
operating systems, and applications.

FIG. 5 is a flowchart illustrating a technique to generically
unpack an executable until no further unpacking is required
according to one or more disclosed embodiments.

FIG. 6A is a flowchart illustrating a technique to set
memory page permissions and address memory page per-
mission violations to control memory access to pages of
memory during the generic unpacking and execution phases
of'an executable according to one or more disclosed embodi-
ments.

FIG. 6B illustrates state diagram 650, which shows the
state transitions for the controlled execution of an executable
from its binary load time to the termination of its execution.

FIG. 7 is a block diagram illustrating various stages of
page memory permissions seen during the generic unpack-
ing and execution phases of an executable according to one
or more disclosed embodiments.

DETAILED DESCRIPTION

As explained above, the availability of different packers
and the fact that an executable can be packed multiple times

US 9,471,783 B2

3

result in making identification of a packed malicious execut-
able by comparing it to a signature difficult. Each identified
variant of a packed malicious executable might need its own
signature in a virus signature database of an antivirus
program. This causes virus signature databases to grow and
increases maintenance costs and efforts—the signature file
updates must be communicated to and downloaded by
end-user computers utilizing the antivirus program. Further,
determining when to apply a signature detection algorithm is
complicated by these same factors.

As also explained above, attempting to unpack a packed
file to expose the original executable presents challenges as
well. Because the unpacking code is combined with the
packed executable, it may be difficult to identify the moment
at which the unpacking code completes execution and the
original binary begins execution. In order to avoid execution
of the original executable, the antivirus program may
attempt to unpack the packed executable, rather than letting
the unpacker code execute. To do this, the antivirus program
must be equipped with the unpacking algorithm used to pack
the executable. When unknown or undocumented packing
techniques are utilized, however, the antivirus program may
not be able to unpack the software. In these types of
instances, the antivirus software must be updated by includ-
ing the unpacker algorithm. Because unpacker algorithms
may be sophisticated, it may take considerable time—
months or years—for antivirus software developers to incor-
porate solutions for newly discovered packing algorithms.
Further, these efforts could be circumvented or made more
onerous by even slight alterations to the packer algorithm.

As explained further below, techniques are disclosed to
address these and other problems by using systems and
methods to generically unpack a singly or multiply packed
application in a controlled manner to detect malware.
Generically unpacking a packed application allows the
application to be unpacked independent of knowledge of the
unpacking algorithm and independent of knowledge of the
implementation of the unpacking stub. Functionality asso-
ciated with hardware-assisted virtualization may be utilized
to help generically unpack the packed application in a
controlled manner. These techniques may reduce or elimi-
nate the need to maintain a plurality of signatures for a single
type of malware.

Referring to FIG. 1, block diagram 100 illustrates the
internal sections within two files—an executable file and a
packed version of that file according to the prior art. Generic
executable 101 represents an executable binary in expanded
(i.e., run-time) form. Packed executable 102, which is the
result of the generic executable 101 being modified through
a packing process, is also illustrated. Executable 101 may
have been created by a developer performing a compile and
link process on source code, object files, and libraries.
Executable 101 may be organized into three different sec-
tions. Binary header 105 holds information about the orga-
nization of the rest of the executable binary, including code
section(s) 110 and data section(s) 115. Binary header 105
also includes memory permissions for all the sections
included in file which will be enforced by an operating
system loader when the executable 101 is loaded into
memory. When loaded into memory, each section starts at a
boundary of a memory page that is defined by the operating
system. A section from the file does not have to only
encompass one memory page—rather, each section can span
an integral number of pages.

Program execution starts (i.e., run-time) from a location
within one of the code sections in an executable binary 101
that is commonly referred to as the “Entry Point” of a

10

15

20

25

30

35

40

45

50

55

60

65

4

program. The Entry Point can be anywhere in the code
section depending on where compiler/assembler has put the
‘main’ function in a binary. The Entry Point does not need
to start on the start of any particular code section, which also
means that the Entry Point does not necessarily start at the
start of any particular memory page.

A packer can pack and compress executable file 101 to
create a packed executable file 102 via what is referred to
herein as a packing process. Typical packers can perform
complex and unique operations, but almost all packers
perform a relatively simple set of operations when viewed
from a high level, as will be described here. In creating
packed executable 102, the packer process compresses the
code section(s) 110 and data section(s) 115 of executable
101 using a compression algorithm on the sections. This is
typically primarily performed in an effort to reduce the file
size of the executable, but, as in the case of malware, it may
be performed primarily to change the signature of the
malware. Once the sections are compressed, they can be
placed in a new section, packed code and data 135, in packed
executable file 102. Alternatively, packers may also pack the
code and data into the same section in which the unpacking
code is contained. Thus, the packer code section 130 and
packed code and data 135 may be in separate sections or in
one section.

The packing process also typically creates a virtual code
section 125 with a predetermined size that it will take in
memory when executed. This size is typically calculated to
be greater than or equal to the size of the uncompressed
packed code and data 135, as it would be found in original
executable 101. Because virtual code section 125 is a section
intended for uncompressed data in memory, it does not
necessarily occupy any space in the packed executable 102
itself. Rather, its size in the file containing the packed
executable 102 may be reflected as a number of memory
pages needed in memory prior to execution of the uncom-
press process of the packer code. The details of the virtual
code section 125 are specified in the changed binary header
120 by packer conversion code. When a binary executable
will be loaded into memory by an operating system, the
number of memory pages that a particular section will take
in memory is also typically specified in a binary header (e.g.,
105 or 120). So, even if a section size on an executable file
on disk is zero, that section may take some space in memory
when loaded by an operating system. Thus, the packing
process has reduced the size of the whole binary file (i.e.,
disk size and download size) by compressing the code and
data but has made provision for adequate memory to hold
the uncompressed code and data when unpacked into
memory at execution.

Alternatively, rather than using a virtual code section 125,
the unpacker stub that resides in packer code section 130 can
allocate sufficient process memory during execution to hold
the uncompressed code and data while unpacking in
memory. However, the unpacker stub must still mark these
memory pages as executable to execute them, and this may
be monitored. Therefore, once execution starts, if memory
pages are allocated with execution permissions, these
memory pages may be identified as possibly containing
uncompressed code and data. If this technique for memory
allocation is used, the allocated memory range can be
identified by monitoring memory allocation, and the allo-
cated memory range may be treated as virtual code section
125. Because most packers employ the technique of using
virtual code section 125 as a placeholder for uncompressed
code and data, this technique is referenced in the examples
below.

US 9,471,783 B2

5

Packer code section 130 is a new code section added in
packed executable 102 that contains the run-time unpacker
stub code. This unpacker stub will read packed code and data
from packed code and data section 135, uncompress it, and
place it in virtual code section 125. More specifically, the
uncompressed code can be placed into the memory allocated
to hold the virtual code section. During the original packing
process the binary header 105 is modified to binary header
120 to make sure that the Entry Point field of the header will
invoke the unpacker stub in packer code section 135.

The packing, transmission, and subsequent unpacking of
an executable may be performed in the context of a network
infrastructure. Referring now to FIG. 2, infrastructure 200 is
shown schematically. Infrastructure 200 contains computer
networks 202. Computer networks 202 include many dif-
ferent types of computer networks available today such as
the Internet, a corporate network or a Local Area Network
(LAN). Each of these networks can contain wired or wire-
less devices and operate using any number of network
protocols (e.g., TCP/IP). Networks 202 are connected to
gateways and routers (represented by 208), end user com-
puters 206 and computer servers 204. Also shown in infra-
structure 200 is cellular network 203 for use with cellular
communication. As is known in the art, cellular networks
support cell phones and many other types of devices (e.g.,
tablet computers not shown). Cellular devices in the infra-
structure 200 are illustrated as cell phones 210. Any of the
devices shown in infrastructure 200 could attempt to execute
a self-extracting executable. If the processor of the device
includes the required capabilities, the concepts of this dis-
closure could be implemented therein. Infrastructure 200 is
illustrative and by way of example only, and other infra-
structures can be employed in the disclosed techniques as
desired.

Referring now to FIG. 3, an example processing device
300 for use in the disclosed techniques according to various
embodiments is illustrated in block diagram form. Process-
ing device 300 may be implemented in various devices, such
as in a cellular phone 210, a gateway or router 208, a client
computer 206, or a server computer 204. Example process-
ing device 300 comprises a system unit 305 which may be
optionally connected to an input device 330 (e.g., keyboard,
mouse, touch screen, etc.) and display 335. A program
storage device (PSD) 340 (sometimes referred to as a hard
disc, flash memory, or computer-readable medium) is
included with the system unit 305. Also included with
system unit 305 may be a network interface 320 for com-
munication via a network (such as cellular network 203 or
computer network 202) with other computing and corporate
infrastructure devices (not shown) or other cellular commu-
nication devices. Network interface 320 may be included
within system unit 305 or be external to system unit 305. In
either case, system unit 305 is communicatively coupled to
network interface 320. Program storage device 340 repre-
sents any form of non-volatile storage including, but not
limited to, all forms of optical and magnetic memory,
including solid-state, storage elements, including removable
media, and may be included within system unit 305 or be
external to system unit 305. Program storage device 340
may be used for storage of software to control system unit
305, data for use by the processing device 300, or both.

System unit 305 may be programmed to perform methods
in accordance with this disclosure. System unit 305 com-
prises one or more processing units (represented by process-
ing unit, or processor, 310), input-output (I/O) bus 325, and
memory 315. Memory 315 may be accessed using the
communication bus 325. Processing unit 310 may include

10

15

20

25

30

35

40

45

50

55

60

65

6

any programmable controller device including, for example,
a mainframe processor, a cellular phone processor, or one or
more members of the INTEL® ATOM™, INTEL®
CORE™, PENTIUM® and CELERON® processor families
from Intel Corporation and the Cortex and ARM processor
families from ARM. (INTEL, INTEL ATOM, CORE, PEN-
TIUM, and CELERON are trademarks of the Intel Corpo-
ration. CORTEX is a registered trademark of the ARM
Limited Corporation. ARM is a registered trademark of the
ARM Limited Company). Memory 315 may include one or
more memory modules and comprise random access
memory (RAM), read only memory (ROM), programmable
read only memory (PROM), programmable read-write
memory, and solid-state memory. Processing unit 310 may
also include some internal memory including, for example,
cache memory or memory dedicated to a particular process-
ing unit and isolated from other processing units for use in
unpacking an executable binary.

Processing device 300 may have resident thereon any
desired operating system. Embodiments of disclosed detec-
tion techniques may be implemented using any desired
programming language, and may be implemented as one or
more executable programs, which may link to external
libraries of executable routines that may be supplied by the
provider of the detection software/firmware, the provider of
the operating system, or any other desired provider of
suitable library routines. As used herein, the term “a com-
puter system” can refer to a single computer or a plurality of
computers working together to perform the function
described as being performed on or by a computer system.

In preparation for performing disclosed embodiments on
processing device 300, program instructions to configure
processing device 300 to perform disclosed embodiments
may be provided stored on any type of non-transitory
computer-readable media, or may be downloaded from a
server 204 onto program storage device 340. Even though a
single processing device 300 is illustrated in FIG. 4, any
number of processing devices 300 may be used in a device
configured according to disclosed embodiments.

Hardware-Assisted Virtualization

Virtualization is a feature which allows a computer sys-
tem or device to run multiple operating systems in parallel
without making any modification in operating system code.
This type of virtualization may be differentiated from para-
virtualization, which requires modifications to the hosted
operating systems. Many recent consumer-based execution
processors support hardware-assisted virtualization. Refer-
ring to FIG. 4, the Virtual Machine Monitor (VMM) 420,
which may also be known as a hypervisor layer, is a software
layer that resides between the system hardware 410 (which
may, for example, be the processing device 300 from FIG.
3) and the one or more operating systems (“OS” or “OSes”)
430. On virtualized systems, an OS 430 may be called a
“guest” OS 430. On systems that do not employ virtualiza-
tion, an OS 430 typically interfaces directly with the hard-
ware 410. When virtualization is used, an OS 430 interfaces
with the hardware 410 through the VMM 420. The VMM
420 is able to support multiple OSes (such as the three OSes
430 illustrated in FIG. 4), and assign to each OS 430
dedicated or shared access to the system resources. In this
way, each OS 430 may run concurrently with the other OSes
430. Further, each OS 430 may run multiple applications,
such as applications 440 illustrated running on OS 430 in
FIG. 4.

On systems without virtualization, an OS kernel typically
executes at a highest privilege level, above other software
executing on the system. With virtualization, the VMM 420

US 9,471,783 B2

7

may utilize hardware virtualization features of processor and
runs at a privilege even above the OS kernel. With hardware-
assisted virtualization, memory page access permissions
may be enforced by the VMM 420. Accordingly, the VMM
420 is able to set Read/Write/Execute permissions on physi-
cal memory pages. Each memory page may be defined to
allow/disallow read, write, and execute privileges. The per-
missions are set by VMM 420 for an OS 430 executing on
the system. If the OS 430 violates the permissions for a
given memory page, control is transferred immediately to a
predefined location in the VMM 420 while suspending that
OS 430. VMM 420 may be equipped with a generic
unpacker 422, which will help analyze, categorize, and scan
the run-time executable in memory upon page permission
violations. Generic unpacker 422 may contain a heuristics
engine 424, a scanner 426, and a database or memory
containing heuristics statistics data 428.

When access to a memory page is requested by the OS
430, the processor 310 will check the memory page permis-
sions before permitting the requested type of access. Accord-
ingly, the processor 310 does not allow any execution from
a memory page if the page does not have execution permis-
sions set. While compiling a program, a programmer can
specifically set other permissions for the pages of a section,
such as by using compiler directives. Referring again to FIG.
1, code section(s) 110 are required to at least have read and
execute permissions set for their memory pages. If not, at
run-time, the executable 101 may generate data execution
prevention faults on the executing processor if data execu-
tion protection is enabled. Data section(s) 115 are required
to have at least read permission set for their pages when
loaded in memory. However, both read and write permis-
sions may be set for data sections.

Generic Unpacking Using Hardware-Assisted Virtualiza-
tion

In order to provide a flexible solution that works across
multiple packers and packing algorithms—known or
unknown—and limit the difficulties associated with unpack-
ing a packed executable, a controlled method allows generi-
cally unpacking a packed executable without specific knowl-
edge of the unpacker or unpacking algorithm. FIG. §
demonstrates a method 500 in which a packed executable is
delivered to a target computer and begins execution. At 505,
the self-extracting executable file arrives at the target
machine in a packed or iteratively-packed format. At this
point the file may be scanned against known signatures at
510 to see if it matches any known malware. As described
above, however, malware detection at this point may be
unsuccessful against any unidentified packed executables.
At 515, the file begins execution. At this point, the unpacker
code segment of the binary (e.g., packer code section 130
from FIG. 1) begins execution. At 520, the unpacking
process continues. If the file has been iteratively packed,
then it must be iteratively unpacked, as shown at 525. After
this unpacking process has been completed, the original
executable of the binary is exposed. As shown at 530, at this
point, at which the unpacker code has completed execution
and the original executable has not yet started execution,
another signature scan may be performed. In other words, as
shown at point 530, generic unpacking would allow the
packed executable to execute and prevent execution before
or just before control is transferred to the Original Entry
Point (“OEP”) of the original executable, shown at 535. The
Original Entry Point is the Entry Point as specified in binary
header of the executable binary when it was in its original
unpacked form. As noted above, emulated execution may be
used to arrive at this point, but there are many packers which

10

15

20

25

30

35

40

45

50

55

60

65

8

contain anti-emulation code that prevents the unpacking
process from further executing after detecting that the
packer code is being emulated.

Techniques are described below to using hardware-as-
sisted virtualization to allow a packed executable to execute
in controlled manner while performing scanning of the
executable in memory at regular intervals using heuristics to
identify and scan the unpacked executable just before con-
trol is transferred to the OEP. In systems without hardware
virtualization features, or where hardware virtualization
features were not enabled, these techniques might still be
used and implemented in software if a privilege level higher
than the OS privilege level exists.

Controlled Execution of Binary: Hardware-Assisted Vir-
tualization

Catching malware just before control is transferred to the
OEP is a goal of any generic unpacking solution. To arrive
at this point, the unpacking code is executed in a controlled
manner, and the memory space of the executable is scanned
and compared against signatures at regular intervals.

Controlled execution may be attained with hardware-
assisted virtualization. As discussed above, the VMM 420,
which executes at the highest privilege level, can set read/
write/execute (R/W/X) access protections at a page-level
granularity for OS page accesses. This mechanism of setting
memory protections on OS pages for OS accesses can be
used to set protections on sections of the packed executable
and its associated memory. Whenever page access permis-
sion violations occur, the VMM 420 gains control of execu-
tion and can check heuristically if the OEP transfer is going
to happen or if sufficient unpacking has happened. At this
point, scanning against malware signatures may be per-
formed, or other malware detection techniques may be
performed.

To make a heuristic determination regarding the transfer
to the OEP, the generic unpacking process needs to control
the execution of the binary at key intervals. These key
intervals may be defined as follows. Binary Load Time may
be defined as the time at which the target packed executable
binary is loaded in memory and execution has not yet
started. Entry Point Execution Violation Time may be
defined as the time at which the control of execution is
transferred to the Entry Point of the packed binary. A Write
Violation Time may be defined as the time at which an
attempt is made to write to pages marked by VMM 420 as
executable and readable (but not writeable). Page Execution
Violation Time may be defined as the time at which an
attempt is made to execute instructions from pages marked
by VMM 420 as readable and writable (but not executable).

Referring to FIG. 6A, diagram 600 demonstrates a
method to control execution of a self-extracting executable.
At Binary Load Time 605, all the sections in the header of
the packed executable binary are parsed. At 610, where
sections are marked as executable and writable (RWX) in
the binary header, permissions of read and execute (R_X)
are assigned using the VMM 420 on pages associated with
that section in memory. Write permissions are removed for
these pages. “RWX” and “R_X" are examples of a notation
indicating the setting of one or more read, write, and execute
permissions. If pages of these sections attempt to execute at
a future time without being written onto, no flag should be
raised. However, if a page from one of these sections
executes after being written onto, there is a possibility that
it is the original unpacked code which is being executed.
This is because the original code may have been written into
the memory page during the unpacking process (i.e., the
write access), and subsequent execution might indicate that

US 9,471,783 B2

9

the original executable is executing. In a situation where a
file has been packed multiple times, the write may be to
write that the next layer of unpacking code into the memory
page, and thus subsequent execution would not be that of the
original executable, but of an iteration of unpacking code. In
either case, this time period presents a point at which a
malware scan may be performed. Thus, a write access to any
of these pages generates a “vmexit,” and control is trans-
ferred to the VMM 420.

A vmexit is a hardware-assisted virtualization mechanism
which transfers control from the OS 430 to the VMM 420.
While control is with the VMM 420, the processor register
states, stack pointer, and other states relating to execution of
the unpacker code may be recorded. Once the states are
recorded and other tasks are performed (e.g., building heu-
ristics data, scanning), control may be passed back to the OS
430 that generated the vmexit or may be passed to an error
handling routine.

At 615, the page which contains the Entry Point of the
self-extracting executable may be identified, and permis-
sions for that page should be set to read only (R_). After all
permissions in page memory have been set by the VMM
420, control is returned to the OS 430 at 620. Execution of
the Entry Point will generate a vmexit at the Entry Point
Execution Violation Time, as shown at 625, and the VMM
420 will gain control. Accordingly, at this point, the stack
pointer value and stack contents representing the start of
execution may be recorded in the heuristics statistics data
428 of the generic unpacker 422. The state at the start of
execution is useful for building heuristics because it is the
state which is expected by the original unpacked program.
Each time control is passed to the VMM 420 after a violation
time, a scan of memory may also be performed by scanner
426 based on heuristics analysis by heuristics engine 424, as
shown at 630. At 635, where sections are marked as writable
and executable (RWX) in the binary header, permissions of
read and execute but no write (R_X) are assigned. After page
permissions are changed, control may be returned to the OS
430.

When the unpacker stub of the self-extracting executable
begins execution, there may be multiple page access viola-
tions, each of which cause control to be passed to the VMM
420. At each of these times, heuristic statistics 428 may be
gathered (625), scans may be performed (630), and permis-
sions may be adjusted and control returned to the OS (635).
Examples of violations and actions based on the violations
will be discussed in greater detail below. In certain situa-
tions, while control is at VMM 420, the generic unpacker
422 may determine through a scan that a known packing
algorithm for a packing iteration of an iteratively packed
executable is recognized. If so, the generic unpacker 422
may proceed by unpacking the contents itself rather than by
controlled execution. If a subsequent packing iteration is
unrecognized, the generic unpacker 422 may return to
controlled execution of the executable.

FIG. 6B shows a state diagram 650 demonstrating the
state transitions during execution of an executable. State 1
(655) represents Binary Load Time, which has been
described above. After setting permissions and recording the
state at Binary Load Time, a vmexit at the Entry Point
Execution Violation Time results in entering State 2 (660),
at which time the image entry point state is recorded.
Control is returned to the OS, and execution continues
normally at State 3 (665).

At a Write Violation Time, State 5 (675) is entered, and
the VMM 420 transfers control to the generic unpacker 422.
The generic unpacker 422 updates its internal bookkeeping

25

30

40

45

55

10

heuristic statistical data 428. This may include the number of
pages of the particular section that are being written on to,
the number of times this particular page has being written,
etc. The generic unpacker 422 also makes the particular page
writable (+W) for the OS 430 but removes execute (-X)
access. At State 6 (680), based on heuristics, a heuristic
engine 424 of the generic unpacker 422 may trigger a scan
in memory of malware signatures. If no signature is found
or if no scan is performed based on heuristics, the generic
unpacker 422 determines that unpacking is still not com-
plete, and control is passed to OS 430 and execution
continues at State 3 (665). If a malware signature is found,
then execution of the executable may be forcefully termi-
nated, as shown at the transition to State 7 (685).

Similarly, at the Page Execution Violation Time, State 4
(670) is entered, and the VMM 420 transfers control to the
generic unpacker 422. The generic unpacker 422 updates its
internal bookkeeping heuristic statistical data 428, which
may include the number of pages of the particular section
that have violated execution access permissions, the number
of times the particular page has violated execution access
permissions, etc. The generic unpacker 422 also makes the
particular page executable (+X) for the OS 430 but removes
write (-W) access. A scan may be performed at State 6
(680), and execution may continue at State 3 (665) or be
terminated at State 7 (685).

Scanning for signatures may be performed at each page
violation time, but heuristics may be used to optimize and
conserve processing resources to avoid scanning each time
a page violation occurs. For example, at each Page Execu-
tion Violation Time, one heuristic that may be used is to
compare the stack pointer and the stack contents to their
original values. If the stack pointer value is equal to the stack
pointer value recorded at the Entry Point Execution Viola-
tion Time (i.e., State 2 (660)), and the stack contents are also
the same, there is a possibility that the OEP is about to
execute. The stack pointer and stack contents returning to
their original Entry Point Execution Violation Time values
may indicate that the unpacker processes have run to
completion and scanning should be performed.

Another heuristic may be to locate the section from which
the page execution violation was trapped. If all the pages of
this section have been written to, and this is first execution
violation from this section subsequent to the writing, then
there may be a high probability that all the pages in this
section have been unpacked by unpacker stub, and control is
being transferred to the OEP. At this point, scanning should
be performed. In another situation, if all the pages of a
particular section have not been written to, and the first
execution violation is trapped from the section, then there is
still a probability that the section is fully unpacked, and
scanning should be performed. Other techniques may be
used to recognize completion of the unpacking of the
executable.

Heuristics may also be employed at a Page Write Viola-
tion Time. If at a write violation, the page from which the
write violation originated is the last page of a particular
section that is being written to, there is a high probability
that the section is completely unpacked. At this point,
scanning should be performed.

The above example heuristics are based on the identifi-
cation of situations in which control may be being passed to
the OEP of the unpacked binary. Other heuristics may be
employed as desired. For example, additional heuristics may
be built based at least in part on specific characteristics of
other packers, such as signatures of packer code, character-
istics of the execution of other packers, etc. The heuristics

US 9,471,783 B2

11

described above may be combined with these other heuris-
tics, or the other heuristics may replace the example heu-
ristics described above. Where new heuristics are needed to
identify certain packers, an update of new heuristic mecha-
nisms would likely be faster and more efficient than writing
a new unpacker for an antivirus program.

As explained above, comparing a virus signature to a
binary is preferably performed after that binary is fully
unpacked but before that binary has begun to execute. In this
way, the binary executable is not obfuscated and hidden
through a packing process and can be compared with virus
signature files directly in memory while preventing the
binary from executing before the malware scanning is
performed. Further, other malware detection techniques in
addition to, or instead of, signature scanning may be per-
formed. In summary, execution of the unpacking code is
allowed, but execution is prevented or interrupted before the
uncompressed, unpacked binary begins execution of the
Original Entry Point.

FIG. 7 illustrates an example of a heuristic for determin-
ing the start of execution of the Original Entry Point, and the
subsequent prevention of its execution. In FIG. 7, four states
710, 720, 730, and 740 of the heuristic are shown. Each state
shows the permissions set for OS memory pages P1, P2, P3,
P4, and P5 for a given set of memory page accesses at a point
in time during execution. As will be described in detail
below, the progression of the execution leads to the changes
in states. Memory pages P1-P4 form the virtual code section
125, and page P5 forms the packer code section 130. In this
example, the unpacker code section 130 only occupies one
page, i.e. page P5. The unpacker stub from page P5 will
unpack code into pages P1-P4. The permissions for pages
P1-P5 are defined by the binary header 120 (not shown in
FIG. 6B).

At initial state 710, the permissions for the pages are set
differently from the definitions in the binary header. Thus,
while the binary header specifies that page P5, which
contains the executable unpacker stub, should have execute
and write permissions, page P5 is set to allow read and write
permissions but not the execute permission at initial state
710. Accordingly, page P5 is represented as “RW_" at initial
state 660, and execution will trigger a vmexit. Similarly,
while pages P1-P4 are defined in the binary header as having
read, write, and execute permissions, pages P1-P4 are set to
allow read and execute permissions but not the write per-
mission at initial state 660. Accordingly, pages P1-P4 are
represented as “R_X” at initial state 660.

When code in page PS5 first attempts to execute, a vmexit
will be triggered because page P5 does not have execution
permissions set. If multiple pages are set to write access,
then the first page of those pages to trigger a vimexit may be
identified as the Entry Point Execution Violation Time. In
this example, with page P5 being the only such page, the first
attempt to execute code stored anywhere in page P5 is an
indication of the Entry Point Execution Violation Time.
After appropriate processing is completed, as described
above (such as recording the stack pointer, contents, and
other state information), page P5 permissions are changed to
add execution permissions (i.e., enabling ‘X’) but remove
write permissions (i.e., disabling ‘W’). This is shown at
second state 720.

Looking at pages P1-P4, these pages have started out
without write permissions. Subsequently, when a write is
attempted at any of pages P1-P4, a vmexit is triggered. A
write anywhere in one of these pages is also an indication
that the code being written is meant to be executed sometime
later. In the example, a write to page P1 is attempted, and a

10

15

20

25

30

35

40

45

50

55

60

65

12

vmexit is triggered. At state 730, page P1 permissions have
been changed to add write permissions (i.e., enabling ‘W”)
but remove execute permissions (i.e., disabling ‘X”). Thus,
any subsequent execution attempt at page P1 will trigger a
vmexit, returning control again to the VMM 420. Once the
permissions for P1 have been adjusted, the VMM 420
returns control to the OS 430, which, in turn, returns control
to the unpacker stub. At this point, the original write
instruction (which triggered the vmexit) may be allowed to
complete, and the unpacker stub writes to page P1.

In this manner, pages P1-P4 may be written to a number
of times. Each time a first write attempt at a page occurs, a
vmexit will be triggered, and the permissions will be
changed as described above with respect to page P1. As
noted above, at each of these points, heuristic statistics 428
may be gathered before permissions are changed and control
is returned to the OS 430. State 740 shows a situation in
which each of pages P1-P4 have been attempted to be
written to, a vmexit was generated, and permissions were
changed to remove execute access and permit write access.
As noted above, at various states, based on heuristic analy-
sis, scans may be performed to determine whether a signa-
ture can be recognized.

At state 690, in the example, assume that all writing (i.e.,
unpacking) has been completed. At this point, the unpacker
code stub from P5 completes execution, and attempts to
transfer control to the Original Entry Point (which resides
somewhere in P1-P4) of the unpacked executable. Assume
that page P3 has the Original Entry Point (OEP) for the
original unpacked executable binary, and page P5 attempts
to transfer control to it. An execution attempt anywhere in
page P3 generates a vmexit. At this point, control is trans-
ferred to the VMM 420, and the heuristic generic unpacker
engine gets control. The generic unpacker engine at this
point can determine that pages P1-P4 have all been written
to, and that this is the first execution violation in this section.
Accordingly, as noted above, there is a high chance that the
OEP is being executed and hence the whole section should
be scanned.

If, at this stage, pages P1-P4 contain unpacked malware,
the malware may be identified by the signature scan. If, on
the other hand, nothing is found, page P3 permissions may
be marked to allow execution access and disallow write
access. Execution may continue until a vmexit triggers
again, and a new heuristic criterion is met. Eventually, if no
further heuristic is triggered or pages P1-P4 complete execu-
tion after multiple iterations of unpacking without any
identification of malware, it may be determined that the
unpacked executable is not malware (or, at least that a
malware signature is not known for the unpacked binary).

EXAMPLES

The following examples pertain to further embodiments
of this disclosure.

1. A method of unpacking a self-extracting executable to
detect malware by loading a self-extracting executable into
memory, the self-extracting executable comprising a first
unpacking stub and a packed executable; allowing the first
unpacking stub to unpack the packed executable into an
unpacked executable; detecting completion of the first
unpacking stub using one or more heuristics; and scanning
the unpacked executable for malware.

2. The method of example 1, wherein the packed execut-
able is an iteratively packed executable comprising one or
more intermediate self-extracting executables, wherein the
instructions to cause one or more processing units to allow

US 9,471,783 B2

13

the first unpacking stub to unpack the packed executable
comprise instructions to cause one or more processing units
to allow the first unpacking stub to unpack the packed
executable into one of the one or more intermediate self-
extracting executables; and allow the one of the one or more
intermediate self-extracting executables to unpack succes-
sively until a final unpacking stub unpacks a final packed
executable into a final unpacked executable, wherein the
instructions to cause one or more processing units to scan the
unpacked executable for malware comprise instructions to
cause one or more processing units to scan the final
unpacked executable for malware.

3. The method of example 2, wherein scanning the
unpacked executable for malware further comprises scan-
ning at least at least one of the one or more intermediate
self-extracting executables for malware.

4. The method of example 2, wherein the final unpacked
executable is not allowed to execute if malware is detected.

5. The method from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises using hardware assisted virtu-
alization to control memory page access permissions to
detect an attempt to execute code that was previously written
into a memory page by the first unpacking stub.

6. The method from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises using hardware assisted virtu-
alization to control memory page access permissions to
detect execution of an entry point of the self-extracting
executable.

7. The method from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises using hardware assisted virtu-
alization to control memory page access permissions to
detect writing to a memory page in which code was previ-
ously executed.

8. The method from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable further comprises: using hardware
assisted virtualization to, after detecting the writing, pause
execution of the first unpacking stub; collecting heuristics
statistics while execution of the first unpacking stub is
paused; determining whether memory should be scanned
based on the heuristics statistics; scanning memory based
upon the determination; and allowing execution of the first
unpacking stub to continue.

9. The method from any of the preceding examples,
wherein scanning the unpacked executable is performed
prior to execution of the unpacked executable.

10. The method from any of the preceding examples,
wherein the packed executable was packed using an
unknown or undetectable packing algorithm.

11. The method from any of the preceding examples,
wherein the one or more heuristics comprise a heuristic to
compare a stack pointer value and stack contents recorded
prior to detecting completion of the first unpacking stub with
a stack pointer value and stack contents recorded prior to
allowing the first unpacking stub to begin unpacking the
packed executable.

12. The method from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises controlling execution of the
first unpacking stub while allowing the first unpacking stub
to unpack the packed executable into an unpacked execut-
able.

13. A system configured to unpack a self-extracting
executable to detect malware, comprising: a memory and

10

15

20

25

30

35

40

45

50

55

60

65

14

one or more processing units, communicatively coupled to
the memory, wherein the memory stores instructions to
cause the one or more processing units to: load a self-
extracting executable into memory, the self-extracting
executable comprising a first unpacking stub and a packed
executable; allowing the first unpacking stub to unpack the
packed executable into an unpacked executable; detect
completion of the first unpacking stub using one or more
heuristics; and scan the unpacked executable for malware.

14. The system of example 13, wherein the packed
executable is an iteratively packed executable comprising
one or more intermediate self-extracting executables,
wherein the instructions to cause one or more processing
units to allow the first unpacking stub to unpack the packed
executable comprise instructions to cause one Oor more
processing units to allow the first unpacking stub to unpack
the packed executable into one of the one or more interme-
diate self-extracting executables; and allow the one of the
one or more intermediate self-extracting executables to
unpack successively until a final unpacking stub unpacks a
final packed executable into a final unpacked executable,
wherein the instructions to cause one or more processing
units to scan the unpacked executable for malware comprise
instructions to cause one or more processing units to scan the
final unpacked executable for malware.

15. The system of example 14, wherein scanning the
unpacked executable for malware further comprises scan-
ning at least at least one of the one or more intermediate
self-extracting executables for malware.

16. The system of example 14, wherein the final unpacked
executable is not allowed to execute if malware is detected.

17. The system from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises using hardware assisted virtu-
alization to control memory page access permissions to
detect an attempt to execute code that was previously written
into a memory page by the first unpacking stub.

18. The system from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises using hardware assisted virtu-
alization to control memory page access permissions to
detect execution of an entry point of the self-extracting
executable.

19. The system from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises using hardware assisted virtu-
alization to control memory page access permissions to
detect writing to a memory page in which code was previ-
ously executed.

20. The system from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable further comprises: using hardware
assisted virtualization to, after detecting the writing, pause
execution of the first unpacking stub; collecting heuristics
statistics while execution of the first unpacking stub is
paused; determining whether memory should be scanned
based on the heuristics statistics; scanning memory based
upon the determination; and allowing execution of the first
unpacking stub to continue.

21. The system from any of the preceding examples,
wherein scanning the unpacked executable is performed
prior to execution of the unpacked executable.

22. The system from any of the preceding examples,
wherein the packed executable was packed using an
unknown or undetectable packing algorithm.

23. The system from any of the preceding examples,
wherein the one or more heuristics comprise a heuristic to

US 9,471,783 B2

15

compare a stack pointer value and stack contents recorded
prior to detecting completion of the first unpacking stub with
a stack pointer value and stack contents recorded prior to
allowing the first unpacking stub to begin unpacking the
packed executable.

24. The system from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises controlling execution of the
first unpacking stub while allowing the first unpacking stub
to unpack the packed executable into an unpacked execut-
able.

25. A computer-readable medium comprising computer
executable instructions stored thereon to cause one or more
processing units to: load a self-extracting executable into
memory, the self-extracting executable comprising a first
unpacking stub and a packed executable; allow the first
unpacking stub to unpack the packed executable into an
unpacked executable; detect completion of the first unpack-
ing stub using one or more heuristics; and scan the unpacked
executable for malware.

26. The computer-readable medium of example 25,
wherein the packed executable is an iteratively packed
executable comprising one or more intermediate self-ex-
tracting executables, wherein the instructions to cause one or
more processing units to allow the first unpacking stub to
unpack the packed executable comprise instructions to cause
one or more processing units to allow the first unpacking
stub to unpack the packed executable into one of the one or
more intermediate self-extracting executables; and allow the
one of the one or more intermediate self-extracting
executables to unpack successively until a final unpacking
stub unpacks a final packed executable into a final unpacked
executable, wherein the instructions to cause one or more
processing units to scan the unpacked executable for mal-
ware comprise instructions to cause one or more processing
units to scan the final unpacked executable for malware.

27. The computer-readable medium of example 26,
wherein the instructions to cause one or more processing
units to scan the unpacked executable for malware further
comprise instructions to cause one or more processing units
to scan at least one of the one or more intermediate self-
extracting executables for malware.

28. The computer-readable medium of example 26,
wherein the final unpacked executable is not allowed to
execute if malware is detected.

29. The computer-readable medium from any of the
preceding examples, wherein the instructions to cause one or
more processing units to allow the first unpacking stub to
unpack the packed executable comprise instructions to cause
one or more processing units to use hardware assisted
virtualization to control memory page access permissions to
detect an attempt to execute code that was previously written
into a memory page by the first unpacking stub.

30. The computer-readable medium from any of the
preceding examples, wherein the instructions to cause one or
more processing units to allow the first unpacking stub to
unpack the packed executable comprise instructions to cause
one or more processing units to use hardware assisted
virtualization to control memory page access permissions to
detect execution of an entry point of the self-extracting
executable.

31. The computer-readable medium from any of the
preceding examples, wherein the instructions to cause one or
more processing units to allow the first unpacking stub to
unpack the packed executable comprise instructions to cause
one or more processing units to use hardware assisted

10

15

20

25

30

35

40

45

50

55

60

65

16

virtualization to control memory page access permissions to
detect writing to a memory page in which code was previ-
ously executed.

32. The computer-readable medium from any of the
preceding examples, wherein the instructions to cause one or
more processing units to allow the first unpacking stub to
unpack the packed executable further comprise instructions
to cause one or more processing units to: use hardware
assisted virtualization to, after detecting the writing, pause
execution of the first unpacking stub; collect heuristics
statistics while execution of the first unpacking stub is
paused; determine whether memory should be scanned
based on the heuristics statistics; scan memory based upon
the determination; and allow execution of the first unpacking
stub to continue.

33. The computer-readable medium from any of the
preceding examples, wherein scanning the unpacked execut-
able is performed prior to execution of the unpacked execut-
able.

34. The computer-readable medium from any of the
preceding examples, wherein the packed executable was
packed using an unknown or undetectable packing algo-
rithm.

35. The computer-readable medium from any of the
preceding examples, wherein the one or more heuristics
comprise a heuristic to compare a stack pointer value and
stack contents recorded prior to detecting completion of the
first unpacking stub with a stack pointer value and stack
contents recorded prior to allowing the first unpacking stub
to begin unpacking the packed executable.

36. The computer-readable medium from any of the
preceding examples, wherein the instructions to cause one or
more processing units to allow the first unpacking stub to
unpack the packed executable comprise instructions to cause
one or more processing units to control execution of the first
unpacking stub while allowing the first unpacking stub to
unpack the packed executable into an unpacked executable.

37. A device configured to unpack a self-extracting
executable to detect malware, comprising modules to: load
a self-extracting executable into memory, the self-extracting
executable comprising a first unpacking stub and a packed
executable; allowing the first unpacking stub to unpack the
packed executable into an unpacked executable; detect
completion of the first unpacking stub using one or more
heuristics; and scan the unpacked executable for malware.

38. The device of example 37, wherein the packed execut-
able is an iteratively packed executable comprising one or
more intermediate self-extracting executables, wherein the
instructions to cause one or more processing units to allow
the first unpacking stub to unpack the packed executable
comprise instructions to cause one or more processing units
to allow the first unpacking stub to unpack the packed
executable into one of the one or more intermediate self-
extracting executables; and allow the one of the one or more
intermediate self-extracting executables to unpack succes-
sively until a final unpacking stub unpacks a final packed
executable into a final unpacked executable, wherein the
instructions to cause one or more processing units to scan the
unpacked executable for malware comprise instructions to
cause one or more processing units to scan the final
unpacked executable for malware.

39. The device of example 38, wherein scanning the
unpacked executable for malware further comprises scan-
ning at least at least one of the one or more intermediate
self-extracting executables for malware.

40. The device of example 38, wherein the final unpacked
executable is not allowed to execute if malware is detected.

US 9,471,783 B2

17

41. The device from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises using hardware assisted virtu-
alization to control memory page access permissions to
detect an attempt to execute code that was previously written
into a memory page by the first unpacking stub.

42. The device from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises using hardware assisted virtu-
alization to control memory page access permissions to
detect execution of an entry point of the self-extracting
executable.

43. The device from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises using hardware assisted virtu-
alization to control memory page access permissions to
detect writing to a memory page in which code was previ-
ously executed.

44. The device from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable further comprises: using hardware
assisted virtualization to, after detecting the writing, pause
execution of the first unpacking stub; collecting heuristics
statistics while execution of the first unpacking stub is
paused; determining whether memory should be scanned
based on the heuristics statistics; scanning memory based
upon the determination; and allowing execution of the first
unpacking stub to continue.

45. The device from any of the preceding examples,
wherein scanning the unpacked executable is performed
prior to execution of the unpacked executable.

46. The device from any of the preceding examples,
wherein the packed executable was packed using an
unknown or undetectable packing algorithm.

47. The device from any of the preceding examples,
wherein the one or more heuristics comprise a heuristic to
compare a stack pointer value and stack contents recorded
prior to detecting completion of the first unpacking stub with
a stack pointer value and stack contents recorded prior to
allowing the first unpacking stub to begin unpacking the
packed executable.

48. The device from any of the preceding examples,
wherein allowing the first unpacking stub to unpack the
packed executable comprises controlling execution of the
first unpacking stub while allowing the first unpacking stub
to unpack the packed executable into an unpacked execut-
able.

49. A device configured to unpack a self-extracting
executable to detect malware, comprising: means for load-
ing a self-extracting executable into memory, the self-
extracting executable comprising a first unpacking stub and
a packed executable; means for allowing the first unpacking
stub to unpack the packed executable into an unpacked
executable; means for detecting completion of the first
unpacking stub using one or more heuristics, independent of
knowledge of the first unpacking stub; and means for
scanning the unpacked executable for malware.

50. The device of preceding example, wherein the packed
executable comprises a sequence of self-extracting
executables, each member of the sequence except the last
comprising an unpacking stub and a successor self-extract-
ing executable, wherein the last member comprises a final
unpacking stub and a final packed executable, wherein the
means for allowing the first unpacking stub to unpack the
packed executable comprise: means for allowing the first
unpacking stub to unpack the packed executable into a first
member of the sequence of self-extracting executables; and

20

25

30

40

45

18

means for allowing each member of the sequence of self-
extracting executables to unpack the successor self-extract-
ing executable until the final unpacking stub unpacks the
final packed executable into a final unpacked executable,
wherein means for scanning the unpacked executable for
malware comprise means for scanning the final unpacked
executable for malware.

The specifics in the examples above may be used any-
where in one or more embodiments. For instance, all
optional features of the apparatus as described above may
also be implemented as methods or processes as described
herein. Further, the examples above may be implemented in
one device or multiple devices in a system.

The above described examples and embodiments may be
implemented as computer-executable instructions or code in
embodied in a computer-readable storage medium. The
computer-executable instructions or computer program
products as well as any data created and used during
implementation of the disclosed technologies can be stored
on one or more tangible computer-readable storage media,
such as optical media discs (e.g., DVDs, CDs), volatile
memory components (e.g., DRAM, SRAM), or non-volatile
memory components (e.g., flash memory, disk drives). Com-
puter-readable storage media can be contained in computer-
readable storage devices such as solid-state drives, USB
flash drives, and memory modules

In the foregoing description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the disclosed embodiments. It
will be apparent, however, to one skilled in the art that the
disclosed embodiments may be practiced without these
specific details. In other instances, structure and devices are
shown in block diagram form in order to avoid obscuring the
disclosed embodiments. References to numbers without
subscripts or suffixes are understood to reference all instance
of subscripts and suffixes corresponding to the referenced
number. Moreover, the language used in this disclosure has
been principally selected for readability and instructional
purposes, and may not have been selected to delineate or
circumscribe the inventive subject matter, resort to the
claims being necessary to determine such inventive subject
matter. Reference in the specification to “one embodiment”
or to “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiments is included in at least one disclosed embodi-
ment, and multiple references to “one embodiment” or “an
embodiment” should not be understood as necessarily all
referring to the same embodiment.

It is also to be understood that the above description is
intended to be illustrative, and not restrictive. For example,
above-described embodiments may be used in combination
with each other and illustrative process steps may be per-
formed in an order different than shown. Many other
embodiments will be apparent to those of skill in the art
upon reviewing the above description. The scope of the
invention therefore should be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled. In the appended claims,
terms “including” and “in which” are used as plain-English
equivalents of the respective terms “comprising” and
“wherein.”

What is claimed is:

1. A non-transitory computer-readable medium compris-
ing instructions stored thereon that when executed cause one
or more processing units to:

US 9,471,783 B2

19

load a self-extracting executable into memory, the self-
extracting executable comprising a first unpacking stub
and a packed executable;
allow the first unpacking stub to unpack the packed
executable into an unpacked executable;
detect an attempt to write to a memory page in which code
was previously executed, by controlling memory page
access permissions using hardware assisted virtualiza-
tion;
detect an attempt to execute code that was previously
written into a memory page by the first unpacking stub,
by controlling the memory page access permissions
using the hardware assisted virtualization;
detect completion of unpacking the packed executable by
the first unpacking stub using one or more heuristics;
and
scan the unpacked executable for malware,
wherein the one or more heuristics comprise:
comparing a stack pointer value and stack contents
recorded prior to detecting completion of the first
unpacking stub with a stack pointer value and stack
contents recorded prior to allowing the first unpack-
ing stub to begin unpacking the packed executable.
2. The non-transitory computer-readable medium of claim
15
wherein the packed executable is an iteratively packed
executable comprising one or more intermediate self-
extracting executables,
wherein the instructions that when executed cause the one
or more processing units to allow the first unpacking
stub to unpack the packed executable comprise instruc-
tions that when executed cause at least some of the one
or more processing units to:
allow the first unpacking stub to unpack the packed
executable into one of the one or more intermediate
self-extracting executables; and
allow the one of the one or more intermediate self-
extracting executables to unpack successively until a
final unpacking stub unpacks a final packed execut-
able into a final unpacked executable,
wherein the instructions that when executed cause the one
or more processing units to scan the unpacked execut-
able for malware comprise instructions that when
executed cause at least some of one or more processing
units to scan the final unpacked executable for mal-
ware.
3. The non-transitory computer-readable medium of claim
2, wherein the instructions that when executed cause one or
more processing units to scan the unpacked executable for
malware further comprise instructions that when executed
cause at least some of the one or more processing units to
scan at least one of the one or more intermediate self-
extracting executables for malware.
4. The non-transitory computer-readable medium of claim
2, wherein the final unpacked executable is not allowed to
execute if malware is detected.
5. The non-transitory computer-readable medium of claim
1, wherein the instructions further comprise instructions to
cause at least some of the one or more processing units to:
pause execution of the first unpacking stub after detecting
the attempt to execute, by using the hardware assisted
virtualization;
collect heuristics statistics while execution of the first
unpacking stub is paused;
determine whether the memory should be scanned based
on the heuristics statistics;
scan the memory based upon the determination; and

10

15

20

25

30

35

40

45

50

55

60

65

20

allow execution of the first unpacking stub to continue.
6. The non-transitory computer-readable medium of claim
1, wherein the instructions further comprise instructions to
cause at least some of the one or more processing units to
detect execution of an entry point of the self-extracting
executable, by controlling the memory page access permis-
sions using the hardware assisted virtualization.
7. The non-transitory computer-readable medium of claim
1, wherein the instructions further comprise instructions to
cause at least some of the one or more processing units to:
pause execution of the first unpacking stub after detecting
the attempt to write by using the hardware assisted
virtualization;
collect heuristics statistics while execution of the first
unpacking stub is paused;
determine whether the memory should be scanned based
on the heuristics statistics;
scan the memory based upon the determination; and
allow execution of the first unpacking stub to continue.
8. The non-transitory computer-readable medium of claim
1, wherein the instructions that when executed cause one or
more processing units to scan the unpacked executable for
malware comprise instructions that when executed cause at
least some of the one or more processing units to scan the
unpacked executable for malware prior to execution of the
unpacked executable.
9. The non-transitory computer-readable medium of claim
1, wherein the packed executable was packed using an
unknown or undetectable packing algorithm.
10. The computer-readable medium of claim 1, wherein
the one or more heuristics further comprise:
determining whether the attempt to execute code is a first
attempt to execute code from a code section including
the memory page after writing all pages of the code
section.
11. The computer-readable medium of claim 1, wherein
the one or more heuristics further comprise:
determining whether a write to a memory page that
generates a page write exception is a write to a last page
of a section of memory pages.
12. A method of unpacking a self-extracting executable to
detect malware, comprising:
loading, using a processor, a self-extracting executable
into memory, the self-extracting executable comprising
a first unpacking stub and a packed executable;
allowing the first unpacking stub to unpack the packed
executable into an unpacked executable;
detecting an attempt to write to a memory page in which
code was previously executed, by controlling memory
page access permissions using hardware assisted vir-
tualization;
detecting an attempt to execute code that was previously
written into a memory page by the first unpacking stub,
by controlling the memory page access permissions
using the hardware assisted virtualization;
detecting, using the processor, completion of the first
unpacking stub using one or more heuristics; and
scanning the unpacked executable for malware,
wherein the one or more heuristics comprise:
comparing a stack pointer value and stack contents
recorded prior to detecting completion of the first
unpacking stub with a stack pointer value and stack
contents recorded prior to allowing the first unpack-
ing stub to begin unpacking the packed executable.

US 9,471,783 B2

21

13. The method of claim 12,

wherein the packed executable is an iteratively packed
executable comprising one or more intermediate self-
extracting executables,

wherein allowing the first unpacking stub to unpack the

packed executable comprises:

allowing the first unpacking stub to unpack the packed
executable into one of the one or more intermediate
self-extracting executables; and

allowing the one of the one or more intermediate
self-extracting executables to unpack successively
until a final unpacking stub unpacks a final packed
executable into a final unpacked executable,

wherein the scanning the unpacked executable for mal-

ware comprises scanning the final unpacked executable

for malware.

14. The method of claim 13, wherein the scanning the
unpacked executable for malware further comprises scan-
ning at least one of the one or more intermediate self-
extracting executables for malware.

15. The method of claim 12, wherein the allowing the first
unpacking stub to unpack the packed executable further
comprises:

pausing execution of the first unpacking stub after detect-

ing the attempt to write or the attempt to execute, by
using the hardware assisted virtualization;

collecting heuristics statistics while execution of the first

unpacking stub is paused;

determining whether the memory should be scanned

based on the heuristics statistics;

scanning the memory based upon the determination; and

allowing execution of the first unpacking stub to continue.

16. The method of claim 12, wherein the scanning the
unpacked executable is performed prior to execution of the
unpacked executable.

17. The method of claim 12, wherein the packed execut-
able was packed using an unknown or undetectable packing
algorithm.

18. The method of claim 12, wherein the one or more
heuristics further comprise:

determining whether the attempt to execute code is a first

attempt to execute code from a code section including
the memory page after writing all pages of the code
section.

19. The method of claim 12, wherein the one or more
heuristics further comprise:

determining whether a write to a memory page that

generates a page write exception is a write to a last page
of a section of memory pages.

20. A system configured to unpack a self-extracting
executable to detect malware, comprising:

a memory; and

one or more processing units, communicatively coupled

to the memory, wherein the memory stores instructions

to cause the one or more processing units to:

load a self-extracting executable into memory, the
self-extracting executable comprising a first unpack-
ing stub and a packed executable;

allow the first unpacking stub to unpack the packed
executable into an unpacked executable;

detect an attempt to execute code that was previously
written into a memory page by the first unpacking
stub, by controlling memory page access permis-
sions using hardware assisted virtualization;

10

15

20

25

30

40

50

55

22

detect an attempt to write to a memory page in which
code was previously executed, by controlling the
memory page access permissions using the hardware
assisted virtualization;
detect completion of unpacking the packed executable
by the first unpacking stub using one or more heu-
ristics; and
scan the unpacked executable for malware,
wherein the one or more heuristics comprise:
comparing a stack pointer value and stack contents
recorded prior to detecting completion of the first
unpacking stub with a stack pointer value and stack
contents recorded prior to allowing the first unpack-
ing stub to begin unpacking the packed executable.
21. The system of claim 20,
wherein the packed executable is an iteratively packed
executable comprising one or more intermediate self-
extracting executables,
wherein the instructions to cause one or more processing
units to allow the first unpacking stub to unpack the
packed executable comprise instructions to cause at
least some of the one or more processing units to:
allow the first unpacking stub to unpack the packed
executable into one of the one or more intermediate
self-extracting executables; and
allow the one of the one or more intermediate self-
extracting executables to unpack successively until a
final unpacking stub unpacks a final packed execut-
able into a final unpacked executable,
wherein the instructions to cause the one or more pro-
cessing units to scan the unpacked executable for
malware comprise instructions to cause at least some of
the one or more processing units to scan the final
unpacked executable for malware.
22. The system of claim 21, wherein the instructions to

cause the one or more processing units to scan the unpacked
executable for malware further comprise instructions to
cause at least some of the one or more processing units to
scan at least one of the one or more intermediate self-
extracting executables for malware.

23. The system of claim 20, wherein the instructions to

cause the one or more processing units to allow the first
unpacking stub to unpack the packed executable further
comprise instructions to cause at least some of the one or
more processing units to:

pause execution of the first unpacking stub after detecting
the attempt to write or the attempt to execute, by using
the hardware assisted virtualization;

collect heuristics statistics while execution of the first
unpacking stub is paused;

determine whether the memory should be scanned based
on the heuristics statistics;

scan the memory based upon the determination; and

allow execution of the first unpacking stub to continue.

24. The system of claim 20, wherein the one or more

heuristics further comprise:

determining whether the attempt to execute code is a first
attempt to execute code from a code section including
the memory page after writing all pages of the code
section.

25. The system of claim 20, wherein the one or more

heuristics further comprise:

determining whether a write to a memory page that
generates a page write exception is a write to a last page
of a section of memory pages.

#* #* #* #* #*

